
www.manaraa.com

A False Measure of Success
“I’d rather have an ounce of cure over this 200 pounds of prevention"

Richard K. Cheng

Level One Consulting
rcheng@l1consulting.com

Abstract

 Several years ago, I was working at a major US
financial institution on their web development
projects. When I started with this company, I was
initially brought in as a consultant to perform web
development. Over the course of the next 5 years, I
had converted over to a full time employee with the
company and served a variety of roles including
developer, team lead, architect, and project manager
of web projects.

This experience report examines the changes in
infrastructure, workflow and processes during my time
with this company and the results of these changes.
The companies’ web development teams started with a
software process that was not perfect, but did satisfy
the teams’ internal business customer. Customers were
pleased with the rapid turn-around time that the
technology teams provided. Any issues or defects that
occurred were within acceptable tolerances for the
customer’s business needs. However, the management
teams of the technology division mandated
implementation of processes to ensure stability,
redundancy, and uptime. Employee goals and
financial bonuses were updated to measure qualities
such as 99.99% uptime, full redundancy and zero
defects. But as the development teams came closer to
their technology goals, the cost of projects increased
and project turnaround time decreased. Defining
“What quality level is acceptable” and “What cost is
acceptable” was shifted from the Business teams to the
Technology teams. Customers were no longer pleased
with the performance of their technology counterparts,
thus creating A False Measure of Success.

1. Business goals

At this financial institution, the business goal of

these particular web development teams was to

disseminate stock market data to a variety of target
audiences. This included institutional customers,
regulators, and home investors. As customer demand
for different data products was discovered, the
business units stressed the need to quickly deliver
information to their customers.

2. The workflow

In typical fashion, the business teams used analysts

to represent their interests . A business analyst worked
with the technical leads to plan the features for each
release. Requirements and documentation were sparse
and communication was informal using phone calls,
face-to-face discussions, and emails. The process for
each release involved iterative designs on the data and
the web sites.

The business units would then try to throw in as
many additional features as possible, with the idea that
the development would be time-boxed to be about 5
days for the development team. Everything that could
be done in those five days was the workload for that
release.

Once development was completed, developers met
with testers to explain and demonstrate the new
functionality. Once testers began testing for a release
the process was time-boxed to about two days.

Once testing was completed, the lead developer
created a set of instructions for installing the release
into production. The lead developer then worked with
the operations personnel to perform the file transfers
and installation procedures needed for the release.

Once the system was released into production, the
business, operations, and development teams
monitored the production site for the next couple of
days. There were usually some fixes that would need
take place after the release, but everyone was aware of
this and in the majority of cases, these were minor and
within the business teams’ tolerance levels.

www.manaraa.com

Based on this workflow, the standard project release
was about a two week process (see Table 1).

Table 1. Process Workflow

Process Steps Duration
• Working with the business

units to discuss business
needs

1 to 2 days

• Development 5 days
• Testing 2 days
• Production Deployment ½ day
• Post Production Updates 2 days

3. Not a Perfect Process

The process, though not perfect, met the needs of
the business teams and their customers. The process
allowed for the business units to create a very quick
turnaround from business vision to production. Since
the business units worked very closely with the
development team during the development phase, the
final product most often met business needs. In
essence, it was a very Lean process [1].

Despite the benefits that our team experienced using
this process, we also experienced limitations when
attempting larger projects and problems with testing
and documentation. The biggest issues with the
process are described in more detail in the next
sections.

3.1. Ability to handle larger projects

Since the development work was usually time boxed
to five days, issues would arise when projects required
more time. In some cases , the development team would
try to squeeze all of the work in five days. Other times,
the work was broken into what could be done in five
days. Still other times, the releases could be extended.
But when using any of these alternatives, the process
was not a natural fit and side effects included poor
testing, “heroic programming”, and inadequate
functionality in interim releases that did not yet fulfill
business needs.

3.2. Testing

Since the testing was time-boxed, it wasn’t so much
a case of whether the testing was complete, rather a
“time’s up, time to ship” mentality. This resulted in
incomplete testing at times.

3.3. Defects

Due to the rapid development and short test time,
errors did occur in production. Most often, errors were
within business tolerance levels. There was an
expectation that each release would have a certain
amount of acceptable defects.

3.4. Lack of documentation

There was very little in terms of formal
documentation. Thus, if the management teams ever
asked for documentation or if we did need to reference
documentation, there was not much in place.

4. Technology Goals

New executive management wanted more control of
their technology investments and new technology
goals were defined that measured the “effectiveness” of
technology teams and team members. The emphasis
was product stability and fault tolerances. Events such
as Y2K followed by the tragedy of September 11th and
Sarbanes-Oxley all helped to place great importance on
measures such as:

• 99.99% Uptime
• Full redundancy
• Disaster recovery
• Zero defect

The Operations and Testing departments were given
strong executive support to implement processes to
address these issues. The idea was to create standards
across all systems, ranging from mission critical markets
systems through to more specialized web projects.

As a result of these new technology goals all
servers and application tiers had to have a redundant
onsite and offsite system with warm or hot failovers.
This required considerable investment in equipment,
new licensing and upgrading of existing licenses to
support enterprise wide solutions. Costs were also
incurred for the resources that implemented the
changes, including operations resources and the
developers needed to re-engineer systems to support
the changes.

For the zero defects policy, yearly bonuses were
paid to members of technical teams , partially based
upon defect rate (as well as uptime). These yearly
bonus ranged anywhere from 5% to 45% of the
employee’s yearly salary, thus employees were very
motivated to release stable code. However, this meant
that fewer risks were taken and changes did not occur
nearly as quickly as they once had. The business units

www.manaraa.com

may have been pushing for faster development, but the
technology divisions had other goals to meet and they
did not want a decrease in their perceived effectiveness
and bonuses.

5. The new process

In order to meet the technology goals , the project
process was updated to mitigate risk. It was commonly
thought that a more traditional waterfall approach with
appropriate document artifacts, which were lacking in
the previous process, was needed. Thus the following
workflow was established:

5.1. Requirements

The business units gathered requirements and were
required to produce a requirements document. This
document contained all of the functionality needed for
the release.

5.2. Project planning

Based upon the requirements, the technical
lead/project manager generated a task based Gantt
chart for the release. Using level of effort estimates, the
Gantt chart dictated the total project timeline.
Technology manager’s goals were also based upon
being able to accurately estimate project plan dates,
which resulted in more conservative timelines and
longer project cycles.

5.3. Development

During the development cycle, the development
team still worked closely with business analysts. Tasks
were assigned based upon the resource assignment on
project plan Gantt charts.

5.4. Testing

In terms of planning, the general rule was that
testing would take 33% of the project time. Thus
testing was still time-boxed. Testers now based their
testing on the documentation, combined with help from
the developers and business analysts. During the
testing phase, there was a daily meeting involving all
team members (business analysts, developers, testers
and operations) to discuss the status of the testing.

5.5. System Deployment

Releases were built with an one-click installation
process with automated rollback. The installation
required quite a bit of development work, particularly
for automated rollback. The systems in question were
four tier systems that spread across multiple servers,
locations, and database systems that affected multiple
datasources. Each release took about a day or two to
design, test, and implement. The developers shipped
the install package to operations personnel. The
operations personnel then performed the installation on
production systems.

5.6. Post production

To ensure production system stability and security,
a corporate policy was mandated where access to
production systems was limited to operations
employees. This introduced a new problem when the
system failed since the developers’ best equipped to
track down data or code issues could not access the
system directly. Without access to these backend
systems, the developers could not act quickly to
address errors. This caused delays in resolving errors
or system malfunctions.

5.7. Project timeline

The timeline in Table 2 roughly typified the new
timeline for a project similar in scope to that in Table 1.
Extra time was consciously added to the schedule to
ensure system stability and comprehensive testing.

Table 2. New Process Workflow

Process Step Duration
• Requirements and Project

Planning
2 weeks

• Development 2 weeks
• Testing 1 week
• Deployment 2 days

6. The results

Over time, all of these procedures did get
implemented and changed the approach to system
development. System stability did increase, and for the
most part the technology goals were met. From the
technology division’s point of view, the changes were
a success.

However, when talking with the business units, it
was clear that they were extremely unhappy. The
business unit ’s costs had increased an order of
magnitude and they had very little to show for the

www.manaraa.com

additional cost. Furthermore, the project turnaround
time had approximately tripled, yet each project release
still had roughly the same number of features. The
primary goal of the business units to quickly place
products on the market was not met, and to make
matters worse, costs kept rising. There was not much
the business units could do to change either problem
because the changes were mandated at executive levels
and technology leaders were charged with carrying
them out. In order to reduce costs and improve
efficiency, the business units began to consider
outsourcing a portion or even all of their projects.

Even the system stability did not offset the costs.
Business tolerances for these web projects were such
that partial outages of up to a couple of days or even a
full outage of a couple of hours were acceptable. I
recall a quote from one of the executive vice presidents,
who had stated, “I’d rather have an ounce of cure over
this 200 pounds of prevention.”

7. Responsibility split

From a technology standpoint, much of what was
accomplished was truly outstanding. The architectures
implemented for redundancy and failovers was
extremely sophisticated and innovative and the defect
and failure rates did drop significantly.

However, the main issue was losing focus on the
business needs. The business units did not care about
much of this extra work, yet they were the units footing
the bill and had little say in how their money was spent.

In Mike Cohn’s Certified ScrumMaster seminar, he
presents the following in terms of responsibility split:

Responsibility Split [2]
• Business determines

o When a release is needed
o What functionality it must contain
o What quality level is acceptable
o What cost is acceptable

• Development determines
o How long it will take to develop

each piece
o How much they can commit to each

[release][3]
What had taken place was the quality level and

acceptable cost were taken away from the business
unit’s realm and placed in the realm of the
technologists. These technologists did not always take
the ROI into account when implementing projects and
infrastructure to satisfy the goals handed down from
their management chain.

8. The Agile Perspective
In retrospect, much of what was accomplished was

pretty sound. The original workflow and process,
though they did meet business goals, did have
drawbacks. It was undisciplined and did rely too much
on heroic and cowboy programming. Thus a new
methodology was a good idea, as long as it did not lose
focus of the business goals. However, the heft of a
traditional waterfall approach was not the methodology
best suited to accomplish the business goals of these
web projects.

Although on the surface the new methodology
seemed like a traditional waterfall approach, in practice
it was not far from an Agile Scrum process. There were
already Scrum-like [4] aspects in place such as:

• Defining the product backlog
• Daily meetings
• Project managers who were already

unknowingly filling many of the ScrumMaster
roles

• Defined business analyst on the team acting
as the Product Owner

• Time boxed projects
• Self organizing teams

With some fine tuning, this could have been
converted to Scrum projects. This fine tuning includes:

• Scrum training for all team members
• Train the Project managers as Scrum Masters
• Reworking the requirement phase to reduce

waste and adapt and “last responsible
moment” philosophy [5]

• Developing the code such that it was
constantly ready to implement.

By running the a more Agile methodology, such as
Scrum, the process could have been tweaked to deliver
a coherent structure to meet the technology stability,
reliability and availability goals while still satisfying the
business needs.

In terms of the infrastructure and architecture, what
was lost was the business voice in technology
decisions. The technologists and business units
should have been working together to not only ensure
that the technologist understand the business needs,
but also to educate the business customer as to their
available options, the cost of their options, and what
each of these options deliver in terms of value to their
projects. Once an educated business unit understands
their options, they should have at least a strong voice
in what the acceptable cost and quality levels are for
their products.

9. References

www.manaraa.com

[1] Poppendieck, Mary, and Poppendieck, Tom, Lean
Software Development, Addison-Wesley, 2003.

[2] Cohn, Mike, “Certified ScrumMaster Seminar”, Mountain
Goat Software, 5/10/2005.

[3] Cohn, Mike, “Certified ScrumMaster Seminar”, Mountain
Goat Software, 5/10/2005. For the purposes of this paper,

the paper author replaced the word “sprint” with the word
“project”.

[4] Schwaber, Ken, Agile Project Management with Scrum,
Microsoft Press, One Microsoft Way, Redmond,
Washington, 2004.

[5] Poppendieck, Mary, and Poppendieck, Tom, Lean
Software Development, Addison-Wesley, 2003, pp. 57-60.

